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1 Multiple Features

Linear regression with multiple variables is also known as ”multivariate

linear regression”.

We now introduce notation for equations where we can have any number

of input variables.
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2 GRADIENT DESCENT FOR MULTIPLE VARIABLES

x
(i)
j = value of feature j in the ith training example

x(i) = the input (features) of the ith training example

m = the number of training examples

n = the number of features

The multivariable form of the hypothesis function accommodating these

multiple features is as follows:

hθ(x) = θ0 + θ1x1 + θ2x2 + θ3x3 + · · ·+ θnxn (1.1)

In order to develop intuition about this function, we can think about θ0 as

the basic price of a house, θ1 as the price per square meter, θ2 as the price per

floor, etc. x1 will be the number of square meters in the house, x2 the number

of floors, etc.

Using the definition of matrix multiplication, our multivariable hypothesis

function can be concisely represented as:

hθ(x) =
[
θ0 θ1 ... θn

]

x0

x1
...

xn

 = θTx

This is a vectorization of our hypothesis function for one training example;

see the lessons on vectorization to learn more.

Remark: Note that for convenience reasons in this course we assume x
(i)
0 , θ

(i)
0 , i ∈

{0, 1, . . . ,m} . This allows us to do matrix operations with θ and x. Hence mak-

ing the two vectors ’θ’ and x(i) match each other element-wise (that is, have the

same number of elements:n+ 1 .

2 Gradient Descent for Multiple Variables

The gradient descent equation itself is generally the same form; we just

have to repeat it for our n features:
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2 GRADIENT DESCENT FOR MULTIPLE VARIABLES

repeat until convergence: {

θ0 := θ0 − α
1

m

m∑
i=1

(hθ(x
(i))− y(i)) · x(i)0

θ1 := θ1 − α
1

m

m∑
i=1

(hθ(x
(i))− y(i)) · x(i)1

θ2 := θ2 − α
1

m

m∑
i=1

(hθ(x
(i))− y(i)) · x(i)2

· · ·

}

In other words:

repeat until convergence: {

θj := θj − α
1

m

m∑
i=1

(hθ(x
(i))− y(i)) · x(i)j for j := 0...n

}

The following image compares gradient descent with one variable to gradi-

ent descent with multiple variables:
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3 GRADIENT DESCENT IN PRACTICE I - FEATURE SCALING

3 Gradient Descent in Practice I - Feature Scal-

ing

We can speed up gradient descent by having each of our input values in

roughly the same range. This is because θ will descend quickly on small ranges

and slowly on large ranges, and so will oscillate inefficiently down to the optimum

when the variables are very uneven.

The way to prevent this is to modify the ranges of our input variables so

that they are all roughly the same. Ideally:

− 1 ≤ xi ≤ 1 (3.1)

or

− 0.5 ≤ xi ≤ 0.5 (3.2)

These aren’t exact requirements; we are only trying to speed things up.

The goal is to get all input variables into roughly one of these ranges, give or

take a few.

Two techniques to help with this are feature scaling and mean normal-

ization. Feature scaling involves dividing the input values by the range (i.e.

the maximum value minus the minimum value) of the input variable, resulting

in a new range of just 1. Mean normalization involves subtracting the average

value for an input variable from the values for that input variable resulting in

a new average value for the input variable of just zero. To implement both of

these techniques, adjust your input values as shown in this formula:

xi :=
xi − µi
si

(3.3)

Where µi is the average of all the values for feature i and si is the range of

values (max - min), or si is the standard deviation.

Note that dividing by the range, or dividing by the standard deviation,

give different results. The quizzes in this course use range - the programming

exercises use standard deviation.

For example, if xi represents housing prices with a range of 100 to 2000

and a mean value of 1000, then:
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4 GRADIENT DESCENT IN PRACTICE II - LEARNING RATE

xi :=
xi − 1000

1900
(3.4)

4 Gradient Descent in Practice II - Learning

Rate

Debugging gradient descent. Make a plot with number of iterations on

the x-axis. Now plot the cost function, J(θ) over the number of iterations of

gradient descent. If J(θ) ever increases, then you probably need to decrease α.

Automatic convergence test. Declare convergence if J(θ) decreases by less

than ε in one iteration, where ε is some small value such as 10−3. However in

practice it’s difficult to choose this threshold value.

It has been proven that if learning rate ケ is sufficiently small, then J(ジ)

will decrease on every iteration.
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5 FEATURES AND POLYNOMIAL REGRESSION

To summarize:

If α is too small: slow convergence.

If α is too large: J(θ) may not decrease on every iteration and thus may

not converge.

5 Features and Polynomial Regression

We can improve our features and the form of our hypothesis function in a

couple different ways.

We can combine multiple features into one. For example, we can combine

x1 and x2 into a new feature x3 by taking x1 · x2.

5.1 Polynomial Regression

Our hypothesis function need not be linear (a straight line) if that does not

fit the data well.

We can change the behavior or curve of our hypothesis function by making

it a quadratic, cubic or square root function (or any other form).

For example, if our hypothesis function is hθ(x) = θ0 + θ1x1 then we can

create additional features based on x1, to get the quadratic function hθ(x) =

θ0 + θ1x1 + θ2x
2
1 or the cubic function hθ(x) = θ0 + θ1x1 + θ2x

2
1 + θ3x

3
1

In the cubic version, we have created new features x2 and x3 where x2 = x21

and x3 = x31.
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6 NORMAL EQUATION

To make it a square root function, we could do:

hθ(x) = θ0 + θ1x1 + θ2
√
x1 (5.1)

One important thing to keep in mind is, if you choose your features this

way then feature scaling becomes very important.

eg. if x1 has range 1 - 1000 then range of x21 becomes 1 - 1000000 and that

of x3 becomes 1 - 1000000000

6 Normal Equation

Gradient descent gives one way of minimizing J . Let’s discuss a second

way of doing so, this time performing the minimization explicitly and without

resorting to an iterative algorithm. In the ”Normal Equation” method, we will

minimize J by explicitly taking its derivatives with respect to the θjs, and setting

them to zero. This allows us to find the optimum theta without iteration. The

normal equation formula is given below:

θ = (XTX)−1XT y (6.1)

There is no need to do feature scaling with the normal equation.

The following is a comparison of gradient descent and the normal equation:
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7 NORMAL EQUATION NONINVERTIBILITY

gradient decent normal equations

need to choose θ no need to choose θ

need many iterations no need to iterate

O(kn2) O(n3)

work well if n is large slow with large n

With the normal equation, computing the inversion has complexity n3. So

if we have a very large number of features, the normal equation will be slow. In

practice, when n exceeds 10,000 it might be a good time to go from a normal

solution to an iterative process.

7 Normal Equation Noninvertibility

When implementing the normal equation in octave we want to use the

’pinv’ function rather than ’inv.’ The ’pinv’ function will give you a value of θ

even if XTX is not invertible.

If XTX is noninvertible, the common causes might be having :

1. Redundant features, where two features are very closely related (i.e. they

are linearly dependent)

2. Too many features (e.g. m ≤ n). In this case, delete some features or use

”regularization” (to be explained in a later lesson).

Solutions to the above problems include deleting a feature that is linearly

dependent with another or deleting one or more features when there are too

many features.
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