
Logistic Regression

emacsun

目录

1 Classion 2

2 Hypothesis Representation 2

3 Decision Boundary 3

4 Cost Function 5

5 Simplified Cost Function and Gradient Descent 7

5.1 gradient decent . 7

6 Advanced Optimization 8

7 Multiclass Classification: One-vs-all 9

8 The Problem of Overfitting 10

9 Cost Function 11

10 Regularized Linear Regression 12

10.1 Gradient Descent . 12

10.2 normal equation . 13

11 Regularized Logistic Regression 14

1

2 HYPOTHESIS REPRESENTATION

1 Classion

To attempt classification, one method is to use linear regression and map

all predictions greater than 0.5 as a 1 and all less than 0.5 as a 0. However, this

method doesn’t work well because classification is not actually a linear function.

The classification problem is just like the regression problem, except that

the values we now want to predict take on only a small number of discrete values.

For now, we will focus on the binary classification problem in which y can take

on only two values, 0 and 1. (Most of what we say here will also generalize to

the multiple-class case.) For instance, if we are trying to build a spam classifier

for email, then x(i) may be some features of a piece of email, and y may be

1 if it is a piece of spam mail, and 0 otherwise. Hence,y ∈ {0, 1} . 0 is also

called the negative class, and 1 the positive class, and they are sometimes also

denoted by the symbols “-” and “+.” Given x(i), the corresponding y(i) is

also called the label for the training example.

2 Hypothesis Representation

We could approach the classification problem ignoring the fact that y is

discrete-valued, and use our old linear regression algorithm to try to predict y

given x. However, it is easy to construct examples where this method performs

very poorly. Intuitively, it also doesn’t make sense for hθ(x) to take values larger

than 1 or smaller than 0 when we know that y ∈ {0, 1}. To fix this, let’s change

the form for our hypotheseshθ(x) to satisfy θ ≤ hθ(θ) ≤ . This is accomplished

by plugging θTx into the Logistic Function.

Our new form uses the ”Sigmoid Function,” also called the ”Logistic Func-

tion”:

hθ(x) = g(θTx)

z = θTx

g(z) =
1

1 + e−z

The following image shows us what the sigmoid function looks like:

欢迎访问zcl的space：zcl.space 2/ 15

www.zcl.space

3 DECISION BOUNDARY

The function g(z) , shown here, maps any real number to the (0, 1) interval,

making it useful for transforming an arbitrary-valued function into a function

better suited for classification.

hθ(x) will give us the probability that our output is 1. For example,hθ(x) =

0.7 gives us a probability of 70% that our output is 1. Our probability that our

prediction is 0 is just the complement of our probability that it is 1 (e.g. if

probability that it is 1 is 70%, then the probability that it is 0 is 30%).

hθ(x) = P (y = 1|x; θ) = 1− P (y = 0|x; θ)

P (y = 0|x; θ) + P (y = 1|x; θ) = 1

3 Decision Boundary

In order to get our discrete 0 or 1 classification, we can translate the output

of the hypothesis function as follows:

hθ(x) ≥ 0.5→ y = 1

hθ(x) < 0.5→ y = 0

The way our logistic function g behaves is that when its input is greater

than or equal to zero, its output is greater than or equal to 0.5:

g(z) ≥ 0.5

when z ≥ 0

Remember.

欢迎访问zcl的space：zcl.space 3/ 15

www.zcl.space

3 DECISION BOUNDARY

z = 0, e0 = 1⇒ g(z) = 1/2

z →∞, e−∞ → 0⇒ g(z) = 1

z → −∞, e∞ →∞⇒ g(z) = 0

So if our input to g is θTx, then that means:

hθ(x) = g(θTx) ≥ 0.5

when θTx ≥ 0

From these statements we can now say:

θTx ≥ 0⇒ y = 1

θTx < 0⇒ y = 0

The decision boundary is the line that separates the area where y = 0 and

where y = 1. It is created by our hypothesis function.

Example:

θ =


5

−1

0


y = 1 if 5 + (−1)x1 + 0x2 ≥ 0

5− x1 ≥ 0

− x1 ≥ −5

x1 ≤ 5

In this case, our decision boundary is a straight vertical line placed on the

graph where x1 = 5, and everything to the left of that denotes y = 1, while

everything to the right denotes y = 0.

欢迎访问zcl的space：zcl.space 4/ 15

www.zcl.space

4 COST FUNCTION

Again, the input to the sigmoid function g(z) (i.e. θTx) doesn’t need to be

linear, and could be function that describes a circle (e.g. z = θ0 + θ1x
2
1 + θ2x

2
1)

or any shape to fit our data.

4 Cost Function

We cannot use the same cost function that we use for linear regression

because the Logistic Function will cause the output to be wavy, causing many

local optima . In other words, it will not be a convex function.

Instead, our cost function for logistic regression looks like:

J(θ) =
1

m

m∑
i=1

Cost(hθ(x
(i)), y(i))

Cost(hθ(x), y) = − log(hθ(x)) if y = 1

Cost(hθ(x), y) = − log(1− hθ(x)) if y = 0

when y = 1, we get the following plot for J(θ) vs hθ(x):

Similarly, when y = 0, we get the following plot for J(θ) vs hθ(x):

欢迎访问zcl的space：zcl.space 5/ 15

www.zcl.space

4 COST FUNCTION

Cost(hθ(x), y) = 0 if hθ(x) = y

Cost(hθ(x), y)→∞ if y = 0 and hθ(x)→ 1

Cost(hθ(x), y)→∞ if y = 1 and hθ(x)→ 0

If our correct answer ’y’ is 0, then the cost function will be 0 if our hy-

pothesis function also outputs 0. If our hypothesis approaches 1, then the cost

function will approach infinity.

If our correct answer ’y’ is 1, then the cost function will be 0 if our hypoth-

esis function outputs 1. If our hypothesis approaches 0, then the cost function

will approach infinity.

Note that writing the cost function in this way guarantees that J(θ) is

convex for logistic regression.

欢迎访问zcl的space：zcl.space 6/ 15

www.zcl.space

5 SIMPLIFIED COST FUNCTION AND GRADIENT DESCENT

5 Simplified Cost Function and Gradient De-

scent

We can compress our cost function’s two conditional cases into one case:

Cost(hθ(x), y) = −y log(hθ(x))− (1− y) log(1− hθ(x)) (5.1)

Notice that when y is equal to 1, then the second term (1−y) log(1−hθ(x))

will be zero and will not affect the result. If y is equal to 0, then the first term

−y log(hθ(x)) will be zero and will not affect the result.

We can fully write out our entire cost function as follows:

J(θ) = − 1

m

m∑
i=1

[y(i) log(hθ(x
(i))) + (1− y(i)) log(1− hθ(x(i)))] (5.2)

A vectorized implementation is:

h = g(Xθ)

J(θ) =
1

m
·
(
−yT log(h)− (1− y)T log(1− h)

)
5.1 gradient decent

Remember that the general form of gradient descent is:

Repeat {

θj := θj − α
∂

∂θj
J(θ)

}

We can work out the derivative part using calculus to get:

Repeat {

θj := θj −
α

m

m∑
i=1

(hθ(x
(i))− y(i))x(i)j

}

欢迎访问zcl的space：zcl.space 7/ 15

www.zcl.space

6 ADVANCED OPTIMIZATION

Notice that this algorithm is identical to the one we used in linear regression.

We still have to simultaneously update all values in theta.

A vectorized implementation is:

θ := θ − α

m
XT (g(Xθ)− ~y) (5.3)

6 Advanced Optimization

”Conjugate gradient”, ”BFGS”, and ”L-BFGS” are more sophisticated,

faster ways to optimize θ that can be used instead of gradient descent. We

suggest that you should not write these more sophisticated algorithms yourself

(unless you are an expert in numerical computing) but use the libraries instead,

as they’re already tested and highly optimized. Octave provides them.

We first need to provide a function that evaluates the following two func-

tions for a given input value θ:

J(θ)

∂

∂θj
J(θ)

We can write a single function that returns both of these:

function [jVal, gradient] = costFunction(theta)

jVal = [...code to compute J(theta)...];

gradient = [...code to compute derivative of J(theta)...];

end

Then we can use octave’s ”fminunc()” optimization algorithm along with

the ”optimset()” function that creates an object containing the options we want

to send to ”fminunc()”.

options = optimset(’GradObj’, ’on’, ’MaxIter’, 100);

initialTheta = zeros(2,1);

[optTheta, functionVal, exitFlag] = fminunc(@costFunction, initialTheta, options);

We give to the function ”fminunc()” our cost function, our initial vector of

theta values, and the ”options” object that we created beforehand.

欢迎访问zcl的space：zcl.space 8/ 15

www.zcl.space

7 MULTICLASS CLASSIFICATION: ONE-VS-ALL

7 Multiclass Classification: One-vs-all

Now we will approach the classification of data when we have more than

two categories. Instead of y = {0, 1} we will expand our definition so that

y = {0, 1, . . . , n}.

Since y = {0, 1, . . . , n} , we divide our problem into n+ 1 (+1 because the

index starts at 0) binary classification problems; in each one, we predict the

probability that ’y’ is a member of one of our classes.

y ∈ {0, 1...n}

h
(0)
θ (x) = P (y = 0|x; θ)

h
(1)
θ (x) = P (y = 1|x; θ)

· · ·

h
(n)
θ (x) = P (y = n|x; θ)

prediction = max
i

(h
(i)
θ (x))

We are basically choosing one class and then lumping all the others into a

single second class. We do this repeatedly, applying binary logistic regression

to each case, and then use the hypothesis that returned the highest value as our

prediction.

The following image shows how one could classify 3 classes:

欢迎访问zcl的space：zcl.space 9/ 15

www.zcl.space

8 THE PROBLEM OF OVERFITTING

To summarize:

Train a logistic regression classifier hθ(x) for each class to predict the prob-

ability that y = i

To make a prediction on a new x, pick the class that maximizes hθ(x)

8 The Problem of Overfitting

Consider the problem of predicting y from x ∈ R. The leftmost figure

below shows the result of fitting a y = θ0 + θ1x to a dataset. We see that the

data doesn’t really lie on straight line, and so the fit is not very good.

Instead, if we had added an extra feature x2 , and fit y = θ0 + θ1x+ θ2x
2 ,

then we obtain a slightly better fit to the data (See middle figure). Naively, it

might seem that the more features we add, the better. However, there is also a

danger in adding too many features: The rightmost figure is the result of fitting

a 5th order polynomial y =
∑5
j=0 θjx

j . We see that even though the fitted curve

passes through the data perfectly, we would not expect this to be a very good

predictor of, say, housing prices y for different living areas x. Without formally

defining what these terms mean, we’ll say the figure on the left shows an instance

of underfitting—in which the data clearly shows structure not captured by the

model—and the figure on the right is an example of overfitting.

Underfitting, or high bias, is when the form of our hypothesis function h

maps poorly to the trend of the data. It is usually caused by a function that is

too simple or uses too few features. At the other extreme, overfitting, or high

variance, is caused by a hypothesis function that fits the available data but does

not generalize well to predict new data. It is usually caused by a complicated

function that creates a lot of unnecessary curves and angles unrelated to the

data.

欢迎访问zcl的space：zcl.space 10/ 15

www.zcl.space

9 COST FUNCTION

This terminology is applied to both linear and logistic regression. There

are two main options to address the issue of overfitting:

1. Reduce the number of features:

(a) Manually select which features to keep.

(b) Use a model selection algorithm (studied later in the course).

2. Regularization

(a) Keep all the features, but reduce the magnitude of parameters θj .

(b) Regularization works well when we have a lot of slightly useful fea-

tures.

9 Cost Function

If we have overfitting from our hypothesis function, we can reduce the

weight that some of the terms in our function carry by increasing their cost.

Say we wanted to make the following function more quadratic:

θ0 + θ1x+ θ2x
2 + θ3x

3 + θ4x
4 (9.1)

We’ll want to eliminate the influence of θ3x
3 and θ4x

4 . Without actually

getting rid of these features or changing the form of our hypothesis, we can

instead modify our cost function:

minθ
1

2m

m∑
i=1

(hθ(x
(i))− y(i))2 + 1000 · θ23 + 1000 · θ24 (9.2)

We’ve added two extra terms at the end to inflate the cost of θ3 and θ4.

Now, in order for the cost function to get close to zero, we will have to reduce the

values of θ3 and θ4 to near zero. This will in turn greatly reduce the values of θ3

and θ4 in our hypothesis function. As a result, we see that the new hypothesis

(depicted by the pink curve) looks like a quadratic function but fits the data

better due to the extra small terms θ3 and θ4.

欢迎访问zcl的space：zcl.space 11/ 15

www.zcl.space

10 REGULARIZED LINEAR REGRESSION

We could also regularize all of our theta parameters in a single summation

as:

minθ
1

2m

m∑
i=1

(hθ(x
(i))− y(i))2 + λ

n∑
j=1

θ2j (9.3)

The λ, or lambda, is the regularization parameter. It determines how much

the costs of our theta parameters are inflated.

Using the above cost function with the extra summation, we can smooth

the output of our hypothesis function to reduce overfitting. If lambda is chosen

to be too large, it may smooth out the function too much and cause underfitting.

Hence, what would happen if λ = 0 or is too small ?

10 Regularized Linear Regression

We can apply regularization to both linear regression and logistic regression.

We will approach linear regression first.

10.1 Gradient Descent

We will modify our gradient descent function to separate out θ0 from the

rest of the parameters because we do not want to penalize θ0.

欢迎访问zcl的space：zcl.space 12/ 15

www.zcl.space

10 REGULARIZED LINEAR REGRESSION

Repeat {

θ0 := θ0 − α
1

m

m∑
i=1

(hθ(x
(i))− y(i))x(i)0

θj := θj − α

[(
1

m

m∑
i=1

(hθ(x
(i))− y(i))x(i)j

)
+
λ

m
θj

]
j ∈ {1, 2...n}

}

The term λ
mθj performs our regularization. With some manipulation our

update rule can also be represented as:

θj := θj(1− α
λ

m
)− α 1

m

m∑
i=1

(hθ(x
(i))− y(i))x(i)j (10.1)

The first term in the above equation, 1 − α λ
m will always be less than 1.

Intuitively you can see it as reducing the value of θj by some amount on every

update. Notice that the second term is now exactly the same as it was before.

10.2 normal equation

Now let’s approach regularization using the alternate method of the non-

iterative normal equation.

To add in regularization, the equation is the same as our original, except

that we add another term inside the parentheses:

θ =
(
XTX + λ · L

)−1
XT y

where L =



0

1

1

. . .

1


L is a matrix with 0 at the top left and 1’s down the diagonal, with 0’s

everywhere else. It should have dimension (n+ 1)× (n+ 1). Intuitively, this is

the identity matrix (though we are not including x0), multiplied with a single

real number λ.

欢迎访问zcl的space：zcl.space 13/ 15

www.zcl.space

11 REGULARIZED LOGISTIC REGRESSION

Recall that ifm < n , then XTX is non-invertible. However, when we add

the term λL, then XTX + λL becomes invertible.

11 Regularized Logistic Regression

We can regularize logistic regression in a similar way that we regularize

linear regression. As a result, we can avoid overfitting. The following image

shows how the regularized function, displayed by the pink line, is less likely to

overfit than the non-regularized function represented by the blue line:

Cost Function

Recall that our cost function for logistic regression was:

J(θ) = − 1

m

m∑
i=1

[y(i) log(hθ(x
(i)))+(1−y(i)) log(1−hθ(x(i)))] (11.1)

We can regularize this equation by adding a term to the end:

J(θ) = − 1

m

m∑
i=1

[y(i) log(hθ(x
(i)))+(1−y(i)) log(1−hθ(x(i)))]+

λ

2m

n∑
j=1

θ2j

(11.2)

The second sum,
∑n
j=1 θ

2
j means to explicitly exclude the bias term, θ0.

I.e. the θ vector is indexed from 0 to n (holding n + 1 values, θ0 through θn),

and this sum explicitly skips θ0, by running from 1 to n, skipping 0. Thus,

欢迎访问zcl的space：zcl.space 14/ 15

www.zcl.space

11 REGULARIZED LOGISTIC REGRESSION

when computing the equation, we should continuously update the two following

equations:

欢迎访问zcl的space：zcl.space 15/ 15

www.zcl.space

	1 Classion
	2 Hypothesis Representation
	3 Decision Boundary
	4 Cost Function
	5 Simplified Cost Function and Gradient Descent
	5.1 gradient decent

	6 Advanced Optimization
	7 Multiclass Classification: One-vs-all
	8 The Problem of Overfitting
	9 Cost Function
	10 Regularized Linear Regression
	10.1 Gradient Descent
	10.2 normal equation

	11 Regularized Logistic Regression

